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Why you are all here

Pictures are non-contractual. Actual bu�et might di�er.
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A mathematical problem

How can I satisfy everybody?
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What is the minimum number of meals that can be selected so that
everyone has something to eat?
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A mathematical problem

How can I satisfy everybody?

What is the minimum number of sets that can be selected so that
every points is inside one set?
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Set cover

Given a hypergraph H = (X ,F), the goal is to �nd a minimal
subset F ′ of F such that every vertex of X is in one hyperedge
of F ′.

Set cover

• This problem is NP-complete (Karp, 1972)
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Structure
Set cover is a very general problem, we can often restrict ourselves
to a more constraint structure.

Graph structure

• hyperedges are edges of the
graph (edge cover)
• hyperedges are closed neighborhoods
of the graph (domination)

Geometric structure

• hyperedges are sets of points that
can be covered by the same disk
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My PhD

Set cover

Structure:

Graphs •
Geometric •

Variation:

Identi�cation•

Propagation•
Game•

Strong geodetic number

Maker-Breaker domination game

Power Domination

Identi�cation of points using disks

Strong geodetic number

Maker-Breaker domination game

Power Domination

Identi�cation of points using disks
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Maker-Breaker Domination
Game
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Domination in graphs (Ore, 1961)

Let G = (V ,E ) be a graph and S be a subset of V .

S dominates G if all vertices of G are in S or adjacent to a vertex
of S .
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Domination games

Game domination number
(Alon et al., 2002)

Domination game
(Bre²ar et al., 2010)

Disjoint domination number
(Bujtás et Tuza, 2014)

Domination game
(Bre²ar et al., 2010)

• Two players: Dominator and Staller

• Alternately select a vertex of the graph that dominates at least one new vertex

• Dominator wants the dominating set to be small

• Staller wants it to be large

D

S

D

Determining the number of moves in an optimal game of the domination game is
PSPACE -complete (Bre²ar et al., 2016).
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Maker-Breaker domination game
(Duchêne, G., Parreau and Renault, 2018+)

• Played on a graph G = (V ,E )

• Two players: Dominator and Staller
• They alternately select vertices of V .
• Dominator wins if and only if the vertices that he selected
induce a dominating set.

Maker-Breaker domination game

D
×
S D

×
S

D

×
S
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The problem

The goal is to decide which player has a winning strategy.

The possible outcomes are the following:

Dominator starts

Staller starts

Dominator wins

Staller wins

Dominator wins Staller wins

P

D

S

N
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Maker-Breaker games

• Played on an hypergraph (X ,F).
• Two players: Maker and Breaker.
• They alternately select vertices of X .
• Maker wins if and only if he selected all the vertices of a
hyperedge A ∈ F .

Maker-Breaker games

• Hex
I Maker has a winning strategy (Nash, 1952)

The Maker-Breaker Domination game is a Maker Breaker game.

• F = {the dominating sets},
Dominator = Maker.
• F = {the closed neighborhoods},
Staller = Maker.
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Maker-Breaker games

If Maker wins the Maker-Breaker game on (X ,F) as the second
player, then he also wins as �rst player.

Theorem (Folklore)

→ It is never interesting to pass

→ There is no game of outcome P

Deciding the outcome of Maker-Breaker is a PSPACE-complete
problem.

Theorem (Schaefer, 1978)
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Outcomes

There exist graphs for the three possibles outcomes.

×
× ×

×
× ×

×

Dominator starts

Staller starts

Dominator Dominator

DominatorStaller Staller

Staller
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A winning condition for Dominator

If a graph can be partitioned into cliques of size at least 2 then
its outcome is D.

Lemma

K2

K2

K4

×

×
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Pairing dominating sets

A set of pairs of vertices {(u1, v1), . . . , (uk , vk)} is a
pairing dominating set if:
• all vertices are distinct,
• V =

⋃k
i=1N[ui ] ∩ N[vi ].

De�nition (Duchêne, G., Parreau, Renault, 2018+)

G has a pairing dominating set =⇒ G has outcome D.
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Pairing dominating sets

Deciding if a graph admits a pairing dominating set is an NP-
complete problem.

Theorem

The proof uses a reduction from SAT.

· · ·
cj1 cj2 cjk

ei ei

Gadget for a variable
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Pairing dominating sets

There exist graphs of outcome D that do not admit pairing
dominating sets.
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Complexity

Deciding the outcome of a Maker-Breaker domination game po-
sition is a PSPACE-complete problem.

Theorem

This result is proved by reduction from Maker-Breaker games which
are PSPACE-complete (Schae�er, 1978).

x1 x2 x3 x4

a01 a11 a02 a12 a03 a13

X1

X2 X3

X4

A1

A3

A2

Dominator follows Breaker's strategy

×

×

Staller follows Maker's strategy
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Maker-Breaker domination game on trees

For paths, removing P2's preserves the outcome.

P6 P4

D D

P5 P3

N N

Is it still true for other graphs?
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Glue operator

We "glue" two graphs on a vertex.

G u Hv

G H

G u vH
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Glue operator

We want to �nd the couples (G , u) such that for all H,

G u H ≡ H:

G
u

G
u

H ≡ H
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Glue operator

A graph (G , u) is neutral for the glue operator if and only if
• G has outcome N
• G \ {u} has outcome D

Theorem

u

u

Kn

•
•
• u
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Trees

Maker-Breaker Domination Game is polynomial on trees.

Theorem

Removing pendant P2's can be done in polynomial time.

∅ T

empty graph K1,0 K1,n

D N N S

25/49



Trees

Maker-Breaker Domination Game is polynomial on trees.

Theorem

Removing pendant P2's can be done in polynomial time.

∅ T

empty graph K1,0 K1,n

D N N S

25/49



Trees

Maker-Breaker Domination Game is polynomial on trees.

Theorem

Removing pendant P2's can be done in polynomial time.

∅ T

empty graph K1,0 K1,n

D N N S

25/49



Trees

Maker-Breaker Domination Game is polynomial on trees.

Theorem

Removing pendant P2's can be done in polynomial time.

∅ T

empty graph K1,0 K1,n

D N N S

25/49



Trees

Maker-Breaker Domination Game is polynomial on trees.

Theorem

Removing pendant P2's can be done in polynomial time.

∅ T

empty graph K1,0 K1,n

D N N S

25/49



Trees

Maker-Breaker Domination Game is polynomial on trees.

Theorem

Removing pendant P2's can be done in polynomial time.

∅ T

empty graph K1,0 K1,n

D N N S

25/49



Trees

Maker-Breaker Domination Game is polynomial on trees.

Theorem

Any tree can be reduced to one of the following con�gurations:

∅ T

empty graph K1,0 K1,n

D N N S

25/49



Trees

Maker-Breaker Domination Game is polynomial on trees.

Theorem

Any tree can be reduced to one of the following con�gurations:

∅ T

empty graph K1,0 K1,n

D N N S

25/49



Complexity

Graphs

Trees

Paths

Cographs

Bipartite
graphs

Chordal
graphs

Split
graphs

PSPACE-c

P

P

PSPACE-c PSPACE-c

PSPACE-c

P

k-Trees
Interval graphs

?
?

PDS property(*): Having outcome D ⇐⇒ having a pairing dominating set

*

*

*

26/49



Complexity

Graphs

Trees

Paths

Cographs
Bipartite
graphs

Chordal
graphs

Split
graphs

PSPACE-c

P

P

PSPACE-c PSPACE-c

PSPACE-c

P

k-Trees
Interval graphs

?
?

PDS property(*): Having outcome D ⇐⇒ having a pairing dominating set

*

*

*

26/49



Complexity

Graphs

Trees

Paths

Cographs
Bipartite
graphs

Chordal
graphs

Split
graphs

PSPACE-c

P

P

PSPACE-c PSPACE-c

PSPACE-c

P

k-Trees
Interval graphs

?
?

PDS property(*): Having outcome D ⇐⇒ having a pairing dominating set

*

*

*

26/49



Complexity

Graphs

Trees

Paths

Cographs
Bipartite
graphs

Chordal
graphs

Split
graphs

PSPACE-c

P

P

PSPACE-c PSPACE-c

PSPACE-c

P

k-Trees
Interval graphs

?
?

PDS property(*): Having outcome D ⇐⇒ having a pairing dominating set

*

*

*

26/49



Complexity

Graphs

Trees

Paths

Cographs
Bipartite
graphs

Chordal
graphs

Split
graphs

PSPACE-c

P

P

PSPACE-c PSPACE-c

PSPACE-c

P

k-Trees
Interval graphs

?
?

PDS property(*): Having outcome D ⇐⇒ having a pairing dominating set

*

*

*

26/49



Other works and perspectives

Other works
• The Maker-Breaker domination numbers

(G., Ir²i£ and Klavºar, 2019)

I The di�erence between the "Dominator starts" and the
"Staller starts" values are unbounded

I PSPACE-complete
I Solved for cycles and trees

• The Maker-Breaker total domination game
(Henning, G., Ir²i£ and Klavºar, 2019)

I Solved on cacti

• The Avoider-Enforcer domination game
I Solved on trees

Perspectives
• Maker-Breaker domination numbers of cographs
• Study of the pairing dominating sets
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Identi�cation of points using
disks
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Identi�cation of points using disks
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Back to the post-defense bu�et

I found a plate. Who does it belong to?

BP

We can identify the right guest.

30/49



Back to the post-defense bu�et

I found a plate. Who does it belong to?

BP

We can identify the right guest.

30/49



Back to the post-defense bu�et

I found a plate. Who does it belong to?

BP

We can identify the right guest.

30/49



Identi�cation in hypergraphs

Two goals:
• Covering
• Separation
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Linked problems

• Test cover (Moret and Shapiro, 1985)

• Identifying codes in graphs (Karpovsky, Chakrabarty and Levitin,

1998)

I Unit disk graphs (Müller and Sereni, 2009)
I Unit interval graphs (Foucaud, Mertzios, Naserasr, Parreau and

Valicov, 2015).
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Identi�cation of points with disks
(G. and Parreau, 2019)

A set P of points in the plane

Input of the problem

A set D of closed disks verifying:
• Every point of P must belong to at
least one disk of D. (Covering)
• Two points of P must belong to two
di�erent subsets of D. (Separation)

Output

γIDD (P): Minimal number of disks necessary to identify P.

• Separation of points using convex sets (Gerbner and Toth, 2012)

• Separation of points using lines parallels to the axis (Calinescu,

Dumitrescu, Karlo� and Wan, 2005)
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Lower bound

Putting k disks in the plane de�nes at most k2−k+1 intersection
areas.

Theorem (Folklore)

12

3

4

56

7 8

9

10

11

12

13

Let P be a set of n points in the plane

γIDD (P) ≥
⌈
1+
√

1+4(n−1)
2

⌉
∼
√
n.

Corollary
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Upper bound

Let P be a set of n points in the plane, γIDD (P) ≤ dn+1
2 e.

Theorem (Adapted from Gerbner and Toth, 2012)
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The points are colinear

Let P be a set of n colinear points, γIDD (P) = dn+1
2 e.

Theorem

The disks go through n + 1 areas on the same line to cover each
point and separate each pair of points.
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Upper bound in general con�guration

The previous upper bound is tight for colinear and cocyclic sets of
points.

Let P be a set of n points such that no three points are colinear
and no four points are cocyclic, γIDD (P) ≤ 2dn6e+ 1.

Theorem

37/49



Principle

Same principle as the previous proof:
• Separating the points into equal size areas using lines
• Iteratively separating points from each area with disks

I Use of Delaunay's triangulation
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Upper bound in the general case

Let P be a set of n points in the plane such that no three points
are colinear. Using three concurrent lines, it is possible to divide
the plane into six areas containing between dn6e − 1 and dn6e
points.

Theorem (J. G. Ceder, 1964)

n
6

n
6

n
6

n
6n

6

n
6
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Complexity

Radii

Centers

Points in the plane Points on a line

Any values
Fixed to the

same value
Any values

Fixed to the
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Anywhere

Fixed on the

points

Unit disk graph

NP-complete

Unit interval
graph

?

O(1)

? ?

? ? ?

• Müller and Sereni, 2009

• Foucaud, Mertzios, Naserasr, Parreau and Valicov, 2015
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Fixing the radius

The following problem is NP-complete:
Instance: A set P of points in the plane and a number k ∈ N.
Question: Is it possible to identify the points of P using k disks
of radius 1?

Theorem

The proof uses a reduction from P3-partition in grid graphs, a
NP-complete problem. The P3's become the following structure:
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Colinear points and �xed radius

The following problem can be solved in linear time:
Instance: A set P of colinear points and a number k ∈ N.
Question: Is it possible to identify the points of P using k disks
of radius 1?

Theorem

The proof has two steps:
• Showing that there always exists a minimum identifying set of
disks in normal form,
• Using a greedy algorithm to �nd such a set.
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Colinear points and �xed radius

A set of disk is in normal form if each connected component of P
is of odd size k and:
• the �rst and last disks contain exactly two points,
• all the other disks contain exactly three points.
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Colinear points and �xed radius

Each minimum identifying set of disks can be transformed:

• By showing that we can divide the connected component so
that they are of odd size and identi�ed by k+1

2 disks,
• Then showing that each of these connected component can be
in normal form.
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Perspectives

• Random disposition of points

• Validity of the results for other shapes or for
higher dimensions

47/49



General conclusion

Strong geodetic number

Maker-Breaker domination game
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