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Why you are all here

Pictures are non-contractual. Actual buffet might differ.
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A mathematical problem

How can | satisfy everybody?
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A mathematical problem

How can | satisfy everybody?

What is the minimum number of sets that can be selected so that
every points is inside one set?
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Set cover

Set cover

Given a hypergraph H = (X, F), the goal is to find a minimal
subset F’ of F such that every vertex of X is in one hyperedge
of F'.
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Set cover

Set cover

Given a hypergraph H = (X, F), the goal is to find a minimal
subset F’ of F such that every vertex of X is in one hyperedge
of F'.

® This problem is NP-complete (Karp, 1972)

4/49



Structure

Set cover is a very general problem, we can often restrict ourselves
to a more constraint structure.
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Structure

Set cover is a very general problem, we can often restrict ourselves
to a more constraint structure.

Graph structure Geometric structure

e hyperedges are edges of the
graph (edge cover)

e hyperedges are closed neighborhoods o hyperedges are sets of points that
of the graph (domination) can be covered by the same disk
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My PhD

Set cover

— T

Structure: Variation:

Graphs .l( > ® Propagation
Geometric 'i<: ® Game
® |dentification

Strong geodetic number

Maker-Breaker domination game
Power Domination

Identification of points using disks

6/49



My PhD

Set cover

— T

Structure: Variation:

Graphs .l( > ® Propagation
Geometric 'i<i ® Game
® |dentification

Strong geodetic number

—> Maker-Breaker domination game

Power Domination

—+» Identification of points using disks

6/49



Maker-Breaker Domination
Game
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Domination in graphs (Ore, 1961)

Let G = (V, E) be a graph and S be a subset of V.

S dominates G if all vertices of G are in S or adjacent to a vertex

of S.
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Domination games

Disjoint domination number
(Bujtas et Tuza, 2014)

Game domination number Domination game
(Alon et al., 2002) (Bresar et al., 2010)

e Two players: Dominator and Staller
o Alternately select a vertex of the graph that dominates at least one new vertex
e Dominator wants the dominating set to be small

e Staller wants it to be large

D

D

Determining the number of moves in an optimal game of the domination game is
PSPACE-complete (Bresar et al., 2016).
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Maker-Breaker domination game
(Duchéne, G., Parreau and Renault, 2018+)

,_[ Maker-Breaker domination game]
® Played on a graph G = (V, E)

® Two players: Dominator and Staller

They alternately select vertices of V.

Dominator wins if and only if the vertices that he selected
induce a dominating set.
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The problem

The goal is to decide which player has a winning strategy.
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The problem

The goal is to decide which player has a winning strategy.

The possible outcomes are the following:

Staller starts

Dominator wins | Staller wins
Dominator starts
Dominator wins D N
Staller wins P S
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Maker-Breaker games

,_[ Maker-Breaker games]

¢ Played on an hypergraph (X, F).
® Two players: Maker and Breaker.
® They alternately select vertices of X.

® Maker wins if and only if he selected all the vertices of a
hyperedge A € F.

® Hex
» Maker has a winning strategy (Nash, 1952)
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,_[ Maker-Breaker games]

¢ Played on an hypergraph (X, F).
® Two players: Maker and Breaker.
® They alternately select vertices of X.

® Maker wins if and only if he selected all the vertices of a
hyperedge A € F.

® Hex
» Maker has a winning strategy (Nash, 1952)

The Maker-Breaker Domination game is a Maker Breaker game.
e F = {the dominating sets},
Dominator = Maker.
e F = {the closed neighborhoods},
Staller = Maker.
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Maker-Breaker games

Theorem (Folklore)]

If Maker wins the Maker-Breaker game on (X, F) as the second
player, then he also wins as first player.
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Maker-Breaker games

Theorem (Folklore)]

If Maker wins the Maker-Breaker game on (X, F) as the second
player, then he also wins as first player.

— It is never interesting to pass

— There is no game of outcome P

Theorem (Schaefer, 1978)]

Deciding the outcome of Maker-Breaker is a PSPACE-complete
problem.
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Outcomes

There exist graphs for the three possibles outcomes.

Dominator starts

Staller starts
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Outcomes

There exist graphs for the three possibles outcomes.

Dominator starts Dominator Dominator Staller
Staller starts Staller Dominator Staller
N D S
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A winning condition for Dominator

If a graph can be partitioned into cliques of size at least 2 then
its outcome is D.
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Pairing dominating sets

Definition (Duchéne, G., Parreau, Renault, 2018+)]

A set of pairs of vertices {(u1,v1),..., (uk, vk)} is a
pairing dominating set if:

® all vertices are distinct,

o V =UK, Nu]nNv].

G has a pairing dominating set = G has outcome D.
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Pairing dominating sets

Theorem

Deciding if a graph admits a pairing dominating set is an NP-
complete problem.

The proof uses a reduction from SAT.

1 S S
. . ) .

Gadget for a variable
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Pairing dominating sets

There exist graphs of outcome D that do not admit pairing
dominating sets.
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Complexity

Theorem

Deciding the outcome of a Maker-Breaker domination game po-
sition is a PSPACE-complete problem.

This result is proved by reduction from Maker-Breaker games which
are PSPACE-complete (Schaeffer, 1978).

X1 X2 X3 X4
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Maker-Breaker domination game on trees

For paths, removing P,'s preserves the outcome.

Ps P,

—
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Maker-Breaker domination game on trees

For paths, removing P,'s preserves the outcome.

Ps Ps3

— /

N N

Is it still true for other graphs?
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Glue operator

We "glue" two graphs on a vertex.
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Glue operator

We "glue" two graphs on a vertex.

G A H
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Glue operator

We want to find the couples (G, u) such that for all H,
GXH=H:
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Glue operator

Theorem

A graph (G, u) is neutral for the glue operator if and only if
® G has outcome N/

® G\ {u} has outcome D
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Trees

Theorem

Maker-Breaker Domination Game is polynomial on trees. ]

Removing pendant P,’s can be done in polynomial time.
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Theorem

Maker-Breaker Domination Game is polynomial on trees. ]

Any tree can be reduced to one of the following configurations:

empty graph K170 Ki,n
D N N S
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Other works and perspectives

Other works
® The Maker-Breaker domination numbers
(G., Ir3i¢ and Klavzar, 2019)
» The difference between the "Dominator starts" and the
"Staller starts" values are unbounded
» PSPACE-complete
» Solved for cycles and trees

® The Maker-Breaker total domination game
(Henning, G., Ir3i¢ and Klavzar, 2019)
» Solved on cacti
® The Avoider-Enforcer domination game
» Solved on trees
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» Solved for cycles and trees

® The Maker-Breaker total domination game
(Henning, G., Ir3i¢ and Klavzar, 2019)
» Solved on cacti
® The Avoider-Enforcer domination game
» Solved on trees

Perspectives
® Maker-Breaker domination numbers of cographs

® Study of the pairing dominating sets
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Back to the post-defense buffet

| found a plate. Who does it belong to?
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Back to the post-defense buffet

| found a plate. Who does it belong to?

We can identify the right guest.

30/49



hypergraphs

Identification in




|dentification in hypergraphs
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Linked problems

® Test cover (Moret and Shapiro, 1985)

® |dentifying codes in graphs (Karpovsky, Chakrabarty and Levitin,
1998)

» Unit disk graphs (Miiller and Sereni, 2009)
» Unit interval graphs (Foucaud, Mertzios, Naserasr, Parreau and
Valicov, 2015).
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|dentification of points with disks
(G. and Parreau, 2019)

,_[ Input of the problem]
A set P of points in the plane ]

:_[ Output]

A set D of closed disks verifying:

£\
® Every point of P must belong to at
least one disk of D. (Covering)

® Two points of P must belong to two
different subsets of D. (Separation)

|\ J

v (P): Minimal number of disks necessary to identify P.
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(G. and Parreau, 2019)

,_[ Input of the problem]
A set P of points in the plane ]

:_[ Output]

A set D of closed disks verifying:

AN
® Every point of P must belong to at
least one disk of D. (Covering)

® Two points of P must belong to two
different subsets of D. (Separation)

|\ J

v (P): Minimal number of disks necessary to identify P.

® Separation of points using convex sets (Gerbner and Toth, 2012)
e Separation of points using lines parallels to the axis (Calinescu,

Dumitrescu, Karloff and Wan, 2005)
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Lower bound

Theorem (FoIhore)]

Putting k disks in the plane defines at most k? — k+1 intersection
areas.

34/49



Lower bound

Theorem (FoIhore)]

Putting k disks in the plane defines at most k? — k+1 intersection
areas.

Corollary

Let P be a set of n points in the plane
14+/14+4(n—1
Py 2 AR

34/49



Upper bound

Theorem (Adapted from Gerbner and Toth, 2012)]

Let P be a set of n points in the plane, v/P(P) < [ZH].
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The points are colinear

Theorem

Let P be a set of n colinear points, y/P(P) = [=FL].

The disks go through n+ 1 areas on the same line to cover each
point and separate each pair of points.
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Upper bound in general configuration

The previous upper bound is tight for colinear and cocyclic sets of
points.

Theorem

Let P be a set of n points such that no three points are colinear
and no four points are cocyclic, v/2(P) < 2[2] + 1.
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Principle

Same principle as the previous proof:

® Separating the points into equal size areas using lines
e [teratively separating points from each area with disks
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Upper bound in the general case

Theorem (J. G. Ceder, 1964)]

Let P be a set of n points in the plane such that no three points
are colinear. Using three concurrent lines, it is possible to divide
the plane into six areas containing between [g] — 1 and [¢]
points.

o3
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Complexity

Points in the plane

Points on a line

Radii Fixed to the Fixed to the
Any values Any values
Centers same value same value
Anywhere
Fixed on the
points
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Fixing the radius

Theorem

The following problem is NP-complete:

Instance: A set P of points in the plane and a number k € N.
Question: Is it possible to identify the points of P using k disks
of radius 17

The proof uses a reduction from Ps-partition in grid graphs, a
NP-complete problem. The P3;'s become the following structure:
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Colinear points and fixed radius

Theorem

The following problem can be solved in linear time:

Instance: A set P of colinear points and a number k € N.
Question: Is it possible to identify the points of P using k disks
of radius 17
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The proof has two steps:

® Showing that there always exists a minimum identifying set of
disks in normal form,

¢ Using a greedy algorithm to find such a set.
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Colinear points and fixed radius

A set of disk is in normal form if each connected component of P
is of odd size k and:

e the first and last disks contain exactly two points,

e all the other disks contain exactly three points.

(R0
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Colinear points and fixed radius

Each minimum identifying set of disks can be transformed:
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Colinear points and fixed radius

Each minimum identifying set of disks can be transformed:

® By showing that we can divide the connected component so
that they are of odd size and identified by % disks,

® Then showing that each of these connected component can be
in normal form.

fffffff D\l 75
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Perspectives

e Random disposition of points

e Validity of the results for other shapes or for
higher dimensions
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General conclusion

Strong geodetic number
Maker-Breaker domination game
Power Domination
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Power domination on triangular grids with Identification of points using disks,
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