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Abstract

The Maker-Breaker domination game is played on a graph G by Dominator and Staller. The players alternatively select a vertex of
G that was not yet chosen in the course of the game. Dominator wins if at some point the vertices he has chosen form a dominating
set. Staller wins if Dominator cannot form a dominating set. In this paper we introduce the Maker-Breaker domination number
γMB(G) of G as the minimum number of moves of Dominator to win the game provided that he has a winning strategy and is
the first to play. If Staller plays first, then the corresponding invariant is denoted γ′MB(G). Comparing the two invariants it turns
out that they behave much differently than the related game domination numbers. The invariant γMB(G) is also compared with
the domination number. Using the Erdős-Selfridge Criterion a large class of graphs G is found for which γMB(G) > γ(G) holds.
Residual graphs are introduced and used to bound/determine γMB(G) and γ′MB(G). Using residual graphs, γMB(T ) and γ′MB(T )
are determined for an arbitrary tree. The invariants are also obtained for cycles. A list of open problems and directions for further
investigations is given.
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Maker-Breaker games (as well as other positional games) have been introduced by Erdős and Selfridge
in [13], and since then have been the subject of numerous studies, see [2,3,14,15]. Maker-Breaker games are
played on hypergraphs by two players called Maker and Breaker. They take turns and at each turn the current
player selects a new vertex. Maker wins if at some point of the game he has selected all vertices from one of
the hyperedges, while Breaker wins if she can keep him from doing it. See [1] and [16] for general introductions
on this field.

Very recently, the Maker-Breaker domination game was introduced in [12]. The game is played on a graph
G with two players named Dominator and Staller. These names were selected to emphasize the domination
nature of the game and to be consistent with the usual domination game where these two names are standard by
now. (The domination game was introduced in [4] and further studied in dozens of papers, cf. [6,11,22,23,24].)
The players alternatively select a vertex of G that was not yet chosen in the course of the game. Dominator
wins if at some point, the vertices he has chosen form a dominating set. Staller wins if Dominator cannot form
a dominating set. Note that the Maker-Breaker domination game is a Maker-Breaker game. Indeed, if for a
graph G we build a hypergraph F with the same set of vertices as G, and in which the hyperedges are the
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dominating sets of G, then Dominator wins the Maker-Breaker domination game on G if and only if Maker
wins the Maker-Breaker game on F .

In several papers on Maker-Breaker games the authors were interested in the smallest number of moves
needed for Maker to win, see [7,8,15]. Also, in [12] it was emphasized that when dealing with the Maker-Breaker
games, there are two natural questions: (i) which player has a winning strategy and (ii) what is the minimum
number of moves if Dominator has a winning strategy. In the seminal paper question (i) is investigated, while
in this paper we study (ii). For this sake we say that if G is a graph, then the Maker-Breaker domination
number γMB(G) of G is the minimum number of moves of Dominator to win the game provided that he has
a winning strategy and is the first to play. Otherwise we set γMB(G) = ∞. Similarly, γ′MB(G) denotes is the
minimum number of moves of Dominator in the game in which Staller plays first.

We proceed as follows. In the next section we list additional definitions and several known results needed
in this paper, as well as prove some basic results on the Maker-Breaker domination number. In Section 2
we first compare γMB(G) with γ′MB(G) and find out that they behave totally different than the related game
domination invariants. We also compare γMB(G) with the domination number and using the Erdős-Selfridge
Criterion prove that if the number of γ-sets of G is not too big, then γMB(G) > γ(G). In Section 3 we introduce
residual graphs, determine (resp. bound) γ′MB(G) (resp. γMB(G)) in terms of the residual graph, and determine
γMB(T ) and γ′MB(T ) for an arbitrary tree. In the next section we obtain the invariants for cycles. We conclude
with a list of open problems and directions for further investigations.

1 Preliminaries

Let G = (V,E) be a graph. A vertex of G adjacent to a leaf is a support vertex of G. A perfect matching of G is
a set of pairwise independent edges that cover V (G). The order of G will be denoted with n(G). If u is a vertex
of G, then N [u] denotes the closed neighborhood of u. If v is another vertex then we set N [u, v] = N [u]∩N [v].
A set D ⊆ V (G) is a dominating set of G if ∪u∈DN [u] = V (G). The domination number γ(G) is the size of a
smallest dominating set of G. A dominating set of size γ(G) is called a γ-set of G.

The Maker-Breaker domination game is called a D-game (resp. S-game) if Dominator (resp. Staller) is the
first to play a vertex. The sequence of vertices selected in a D-game will be denoted with d1, s1, d2, s2, . . ., and
the sequence of vertices selected in an S-game with s′1, d

′
1, s
′
2, d
′
2, . . . Suppose that Dominator wins a D-game.

Then the last vertex played is by Dominator, let it be dk. By the definition of the game, {d1, . . . , dk} is a
dominating set of G. Similarly, if Dominator wins an S-game and the last vertex played by Dominator is d′`,
then {d′1, . . . , d′`} is a dominating set of G. We say that a move of Staller is a double threat if it creates two
possibilities for her to win in the next move and consequently Dominator cannot prevent Staller to win.

Let G be a graph, k ≥ 1, and u1, . . . , uk, v1, . . . , vk pairwise different vertices of G. Then we say that
X = {{u1, v1}, . . . , {uk, vk}} is a pairing dominating set if

k⋃
i=1

N [ui, vi] = V (G) .

If X = {{u1, v1}, . . . , {uk, vk}} is a pairing dominating set such that uivi ∈ E(G) holds for i ∈ [k], then we
say that X is a dominating matching.

In the rest we will use this concept via the following interpretation proved in [12, Proposition 9].

Lemma 1.1 Let u1, . . . , uk, v1, . . . , vk be pairwise different vertices of a graph G, and let X =
{{u1, v1}, . . . , {uk, vk}}. Then X is a pairing dominating set if and only if every set {x1, . . . , xk}, where
xi ∈ {ui, vi}, i ∈ [k], is a dominating set of G.

A direct application of this Lemma is the following fact.

Fact 1.2 [12, Proposition 10] If G admits a pairing dominating set, then Dominator has a winning strategy
on G in the D-game as well as in the S-game.

The converse of Fact 1.2 does not hold in general. For instance, in [12, Figure 4] a chordal graph is presented
on which Dominator has a winning strategy in both games but admits no pairing dominating set. On the other
hand, the converse holds in the class of trees because if Dominator has a winning strategy on a tree T , then it
was proved in [12] that T has a dominating matching. Moreover, the converse also holds for cographs.

Lemma 1.3 (No-Skip Lemma) In an optimal strategy of Dominator to achieve γMB(G) or γ′MB(G) it is never
an advantage for him to skip a move. Moreover, if Staller skips a move it can only be an advantage for
Dominator.
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If G is a graph and S ⊆ V (G), then let G|S denote that graph G in which the vertices from S are declared
to be already dominated, that is, Dominator is not obliged to dominate them in the rest of the game. Then we
have the following Continuation Principle, a proof of which is much simpler that the corresponding principle
for the domination game [21].

Remark 1.4 (Continuation Principle) Let G be a graph with A,B ⊆ V (G). If B ⊆ A, then γMB(G|A) ≤
γMB(G|B) and γ′MB(G|A) ≤ γ′MB(G|B).

Indeed, the remark follows from the fact that Dominator can apply the same strategy in G|A as in G|B.
Suppose that γMB(G) < ∞. Then in any winning strategy of Dominator, he will play at most half of the

vertices (because Staller will play the other half) which in turn implies that

1 ≤ γMB(G) ≤
⌈
n(G)

2

⌉
. (1)

The bound is sharp, consider for instance the disjoint union of K1 and several copies of K2. It is also easy to
see that all the possible values from (1) can be realized by considering the disjoint union of a complete graph
and an appropriate number of K2s. Similarly, for the S-game, assuming that γ′MB(G) <∞, we have

1 ≤ γ′MB(G) ≤
⌊
n(G)

2

⌋
, (2)

where again all the values can be realized.
Later we will apply the celebrated Erdős-Selfridge Criterion for Maker-Breaker games that reads as follows.

Theorem 1.5 (Erdős-Selfridge Criterion [13]) If F is a hypergraph, then

∑
A∈F

2−|A| <
1

2
⇒ F is a Breaker’s win .

This theorem together with its proof can also be found in the book [16, Theorem 2.3.3].

2 Maker-Breaker domination numbers

In this section we first compare γMB(G) with γ′MB(G) and construct graphs for all possible values of the
invariants. In the second part we compare γMB(G) with the domination number and using the Erdős-Selfridge
Criterion find a large class of graphs G for which γMB(G) > γ(G) holds.

2.1 Realizations of Maker-Breaker domination numbers

One of the fundamental theorems on the domination game proved in [4,21] asserts that the difference between
the value of the game domination number when Dominator starts and when Staller starts is bounded by 1,
that is to say |γg(G)− γ′g(G)| ≤ 1 holds for every graph G. The next result reveals that the situation with the
Maker-Breaker domination number is dramatically different.

Theorem 2.1 If G is a graph, then γ(G) ≤ γMB(G) ≤ γ′MB(G). Moreover, for any integers r, s, t, where
2 ≤ r ≤ s ≤ t, there exists a graph G such that γ(G) = r, γMB(G) = s, and γ′MB(G) = t.

Note that if γ(G) = 1, then also γMB(G) = 1. Hence Theorem 2.1 does not extend to the case r = 1. On
the other hand, if Gt, t ≥ 1, is the graph obtained from t disjoint triangles by identifying a vertex from each
of the triangles (so that this new vertex is of degree 2t), then γ(Gt) = 1, γMB(Gt) = 1, and γ′MB(Gt) = t.

Theorem 2.1 extends also to highly connected graphs. To see this, consider the graphsHk,r,s,t, 2 ≤ r ≤ s ≤ t,
k ≥ 1, that are schematically drawn in Fig. 1. Here, each vertex of a Kk clique is adjacent to each vertex of
the clique Kk+r. One can see that γ(Hk,r,s,t) = r, γMB(Hk,r,s,t) = s, and γ′MB(Hk,r,s,t) = t. Moreover, Hk,r,s,t

is (k + 1)-connected.

2.2 Relation with the domination number

As already observed above, γMB(G) = 1 if and only if γ(G) = 1. In general it would be interesting to
characterize the graphs G such that γMB(G) = γ(G) = k, where k ≥ 2 is a fixed integer. For k = 2 the answer
is simple:
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xr+1 xk+r

Kk Kk Kk Kk Kk Kk

Kk+r

t− r + 1 s− r + 1

· · · · · ·

. . .

. . .
x1 x2 x3 xr

Fig. 1. Graph Hk,r,s,t

Proposition 2.2 Let G be a graph with γ(G) = 2. Then γMB(G) = γ(G) = 2 if and only if G has a vertex
that lies in at least two γ-sets of G.

Proposition 2.2 can be rephrased to hold for larger k also, but this would be more or less just rephrasing the
definitions. It would be more interesting to find a structural characterization of the corresponding graphs. This
task, however, seems difficult. On the other hand, the Erdős-Selfridge Criterion gives a sufficient condition for
γMB(G) > γ(G). Let Xγ(G) be the number of γ-sets of a graph G, cf. [9]. Then:

Proposition 2.3 If G is a graph and Xγ(G) < 2γ(G)−1, then γMB(G) > γ(G).

Consider the cycles C3k−1, k ≥ 1. It is known and easy to see that γ(C3k−1) = k. We now determine
the number of γ-sets of C3k−1. Each vertex from a γ-set dominates itself and its two neighbors. As there are
k such triplets and 3k − 1 vertices in the graph, there is only one vertex that is dominated by two vertices
from the γ-set, all others are dominated exactly once. Thus if the vertex that is dominated twice is fixed,
then the γ-set of the cycle is uniquely determined. As there are 3k − 1 choices for this vertex, we have
Xγ(C3k−1) = 3k − 1. If k ≥ 5, then Xγ(C3k−1) = 3k − 1 < 2k−1 = 2γ(C3k−1)−1, and by Proposition 2.3, we
conclude that γMB(C3k−1) > k = γ(C3k−1). Actually, γMB(C3k−1) is much bigger than γg(C3k−1) as we will
see in Section 4.

The converse of Proposition 2.3 does not hold as the following example shows. If k ∈ {3, 4}, then
Xγ(C3k−1) = 3k − 1 > 2k−1 = 2γ(C3k−1)−1, but as we will see in Section 4, γ(C3k−1) = k < k + 1 =⌊
3k−1

2

⌋
= γMB(C3k−1).

3 Residual graphs

In this section we study the Maker-Breaker domination number on a construction that might be of independent
interest and that will be later used to determine the invariant for trees.

If G is a graph, then we say that the residual graph R(G) of G is the graph obtained from G by iteratively
removing pendant paths P2 until no such path is present. By a pendant P2 we mean P2 attached to G with
an edge. Hence, when such a pendant P2 is removed, exactly two vertices and two edges are removed. When
G = P2, we can also remove it and obtain the empty graph.

Note that H = R(G) for some graph G if and only if H is the empty graph, H = K1, or each support
vertex of H has degree at least 3. This is in particular true if H has no support vertices. We further observe:

Lemma 3.1 If G is a graph, then R(G) is unique (up to isomorphism).

Note that also that if R(G) 6= K1, then G \ V (R(G)) is unique. To see that it is not unique in general,
consider a path P2k+1, k ≥ 2, and different sequences of removing pendant P2s.

Lemma 3.2 Let G be a graph and R(G) a residual graph of G. Then

(i) G \ V (R(G)) is a forest that has a unique perfect matching, and

(ii) G has a perfect matching if and only if R(G) has a perfect matching.

For the proof of the main result of this section, we also need the following.
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Lemma 3.3 If T is a tree that admits a perfect matching and v ∈ V (T ), then Staller has a strategy for the

S-game such that Dominator has to select at least n(T )
2 vertices to dominate T and v is played by Staller in her

last move.

Proof. We prove the claim by induction on n(T ). If T = P2 and v ∈ V (P2), then Staller can play on v and
Dominator has to reply on the other vertex.

Let now n(T ) ≥ 4 and consider T as a BFS-tree rooted at an arbitrary vertex r. Let x be a leaf of this
BFS-tree at the largest distance from r and let y be the neighbor of x. Then deg(y) = 2 because T has a perfect
matching. Let z be the other neighbor of y. Set T ′ = T \ {x, y}. As T has a perfect matching, xy belongs
to it, hence T ′ also has a perfect matching. If v ∈ V (T ′), then Staller starts on y, Dominator has to reply on
x (otherwise Staller would win) and then Staller applies her strategy on T ′ (by the induction hypothesis). If
v ∈ {x, y}, then she applies her strategy on T ′ with her last move on z, and then plays v in her last move.
Note that if Dominator plays on v while Staller is playing on T ′, then Staller wins the game as she can prevent
Dominator from playing on one pair of vertices from the matching in T ′.

From the above strategy of Staller we conclude that the total number of Dominator’s moves was n(T ′)
2 +1 =

n(T )
2 . 2

Note that by the strategy from the proof of lemma 3.3, unless Staller wants to play on a leaf, she plays on
the support vertex, forcing Dominator to reply on its neighboring leaf and separating this P2 from the rest of
the graph.

Theorem 3.4 Let R(G) be a residual graph of G and let H = G \ V (R(G)). Then

(i) γ′MB(G) = n(H)
2 + γ′MB(R(G)),

(ii) n(H)
2 + γMB(R(G))− 1 ≤ γMB(G) ≤ n(H)

2 + γMB(R(G)).

Proof. (i) H has a perfect matching and is a forest by Lemma 3.2(i). Let S-game be played on G and consider
the following strategy of Staller. By Lemma 3.3 she can play on each tree of H and play last on the vertex of
this tree adjacent to R(G). Dominator has to reply on the matching (otherwise Staller wins the game). Thus,

Dominator makes (at least) n(H)
2 moves on H. Moreover, Staller plays on vertices adjacent to R(G), hence no

vertex in R(G) will be dominated by the time Staller makes her first move in R(G). Next, Staller is the player
to make the first move on R(G) and she follows her optimal strategy there to ensure at least γ′MB(R(G)) moves
of Dominator.

On the other hand, Dominator’s strategy is to then reply wherever Staller plays, H or R(G), with its

strategy on this graph. As H has a perfect matching, Dominator makes no more than n(H)
2 moves on H.

Moreover, he makes at most γ′MB(R(G)) moves on R(G). Hence, we have γ′MB(G) = n(H)
2 + γ′MB(R(G)).

(ii) Suppose now that the D-game is played on G. To prove the upper bound, Dominator’s strategy is to
start on R(G) and then reply on R(G) or H if Staller plays there. As H has a perfect matching, Dominator

makes no more than n(H)
2 moves on H. Moreover, he makes at most γMB(R(G)) moves on R(G). Hence we

get the upper bound γMB(G) ≤ n(H)
2 + γMB(R(G)).

To prove the lower bound, consider the following strategy of Staller depending on the first move of Dom-
inator. We will distinguish two cases, the second with two subcases, which are schematically depicted in
Fig. 2.

1 The first move of Dominator is on R(G).
Staller first applies her strategy from Lemma 3.3 on each tree of H, playing the vertex adjacent to R(G)

as her last move on each of the trees. With this, she forces Dominator to play (at least) n(H)
2 moves on

H. After that we have an ordinary D-game played on R(G), so at least γMB(R(G)) moves are made on it
by Dominator if Staller follows her strategy there.

2 The first move of Dominator is on H.
Let d1 be the vertex Dominator plays in his first move, let T be the connected component of H containing

d1 (recall that T is a tree), let P be the shortest path between d1 and R(G) in T , and let M be the unique
perfect matching of T (cf. Lemma 3.2(i)).

In this case, Staller first applies her strategy from Lemma 3.3 on all the other trees of H, playing the
vertex adjacent to R(G) as her last move on each tree. Next, Staller applies her strategy from Lemma 3.3
on the edges from M , which are not incident with P . Additionally, she plays last on the vertices closest
to P . After that, only R(G), P , and maybe some vertices adjacent to P , remain undominated.
2.1 At least one vertex adjacent to P is still undominated (see Fig. 2).
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R(G)

d1

H

T1

T2
• •

•

Tk

G

Case 1

R(G)
d1

Case 2.1

R(G)
y2 y1 v x1 x2 d1

Case 2.2

Fig. 2. Representations of the cases from the proof of Theorem 3.4

Let u be an undominated vertex adjacent to P . Staller plays on its neighbor on P , forcing Dominator
to reply on u. Staller does so on each such vertex. After that, the only undominated vertices lie on
P , moreover, up to now, at least one move of Dominator was played on each already completely
dominated edge from M .

As long as there are some more undominated edges from M on P , at least one of them, say e ∈M ,
is incident to a vertex s of P already played by Staller. Her strategy is to play on the vertex of e
which is at distance 2 from s. Then Dominator has to reply on the other vertex of e, otherwise Staller
wins by playing it. Hence, Staller can force Dominator to reply on all remaining edges.

2.2 The only undominated vertices in H lie on P .
Staller’s strategy is to play on the vertex v of P at distance 3 from d1. Dominator has to reply on

a neighbor of v, otherwise one of the neighbors of v is not dominated and Staller can win by playing
that vertex and creating a double threat. Indeed, in this case, two undominated adjacent vertices are
played by Staller, and no matter where Dominator answers, she can play another consecutive vertex
and win the game.

Let xi be a vertex at distance i from v on P in the direction of d1, and yi be a vertex at distance i
from v on P in the direction of R(G) for all possible i ≥ 1, see Fig. 2 again.

If Dominator replies on x1, then Staller’s next move is y2. Now, Dominator has to reply on y1,
otherwise Staller wins. Then Staller repeats this strategy until P is dominated, i.e., she plays on the
vertices y2k in the increasing order, and Dominator is forced to reply on y2k−1.

If Dominator replies on y1, then Staller replies on x2. After that, Dominator has to play x1. Next,
Staller applies the same strategy as before, taking y1 as the new d1.

In both cases, Dominator is forced to play at least one move on each edge of the matching M , hence at

least n(T )
2 moves are made on T . On H − T , at least n(H−T )

2 moves are made by Lemma 3.3.
After T is completely dominated, Staller follows her optimal strategy on R(G), but it might happen

that one vertex u in R(G) is already dominated (by a move of Dominator in H close to R(G)). As Staller’s
strategy on H forces Dominator to answer on H, Staller will be the first player to play on R(G). But as
she can imagine that Dominator’s move was u, we have

γ′MB(R(G)|u) ≥ γ′MB(R(G)|N [u]) ≥ γMB(R(G))− 1 ,

hence the total number of moves on R(G) is at least γMB(R(G))− 1.

In either case, Dominator played at least n(H)
2 + γMB(R(G))− 1 moves, which proves the lower bound. 2

Note that in the inequality γ′MB(G|u) ≥ γMB(G) − 1 from the above proof, the equality can be attained.
For example, consider the graph G on Fig. 3. Clearly, γMB(G) = 2 and γ′MB(G|u) = 1.

Appending to G some trees with perfect matchings, where at least one of them is attached to u, we get
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u

Fig. 3. The graph G with the property γ′MB(G|u) = γMB(G)− 1.

graphs that attain the lower bound from Theorem 3.4(ii).
To conclude the section we apply the residual construction to determine the Maker-Breaker domination

number of trees. This contrasts the domination game where no such result is known, cf. [5,17,18].

Theorem 3.5 If T a tree, then

γMB(T ) =


n(T )
2 ; T has a perfect matching,

n(T )−1
2 ; R(T ) ∼= K1,

n(T )−k+1
2 ; R(T ) ∼= K1,k for k ≥ 3,

∞; otherwise,

and

γ′MB(T ) =

{
n(T )
2 ; T has a perfect matching,

∞; otherwise.

Note that by Theorem 3.5, γMB and γ′MB of trees are polynomial.

4 Cycles

The D-game domination number and the S-game domination number of cycles are given with the following
formulas:

γg(Cn) =

{⌈
n
2

⌉
− 1; n ≡ 3 mod 4,⌈

n
2

⌉
; otherwise,

γ′g(Cn) =

{⌈
n−1
2

⌉
− 1; n ≡ 2 mod 4,⌈

n−1
2

⌉
; otherwise.

This fundamental result was first obtained in an unpublished manuscript [20]. The result appeared for the first
time in press in the paper [19], where an alternative proof is given. For the total domination game, parallel
results were obtain in [10]. The latter paper investigates the total domination game on paths and cycles only.
So the (total) game domination number of cycles is far from being straightforward. Here we determine the
Maker-Breaker domination number of cycles, a task that turned out to be less involved.

Using Lemma 1.1 and Fact 1.2 it is easy to see that Dominator has a winning strategy on even cycles.
By observing that removing the neighborhood of any vertex of an odd cycles leaves this graph with a perfect
matching we can also see that Dominator has a winning strategy on odd cycles. However it is interesting to
remark that Dominator cannot do better than these strategies.

Theorem 4.1 If n ≥ 3, then

γMB(Cn) = γ′MB(Cn) =
⌊n

2

⌋
.

5 Concluding remarks

To conclude the paper we list several problems and directions for further investigation of the Maker-Breaker
domination number.

(i) For the upper bound in (1) we have provided examples of graphs that attain the equality. These examples
are not connected and it is not difficult to achieve the equality with connected graphs of even order.
However, we do not know of any connected graph of odd order (different from K1) for which the equality
in (1) is achieved. More generally, we ask for a characterization of the extremal graphs with respect to (1)
and (2).

(ii) As we already mentioned, it would be interesting to find a structural characterization of the graphs G for
which γMB(G) = γ(G) = k holds, where k ≥ 2 is a fixed integer.

(iii) It would also be interesting to investigate γMB(G�H) and γ′MB(G�H), where G and H are arbitrary
graphs and G�H is the Cartesian product of G and H. In particular, it would be interesting to determine
γMB(Pn�Pm) (and γ′MB(Pn�Pm)), as well as γMB(G�K2) (and γ′MB(G�K2)) for an arbitrary graph
G.
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(iv) If G is a cograph, then it is not difficult to determine whether Dominator or Staller wins the Maker-
Breaker domination game [12]. On the other hand, it does not seem straightforward to determine the
Maker-Breaker domination numbers of cographs.

(v) In this paper we have considered the Maker-Breaker domination number which is an optimization problem
from Dominator’s point of view. It would likewise be of interest to consider the Staller’s point of view,
that is, assuming that Staller wins on a graph G, what is the minimum number of moves with which she
can achieve the goal?
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