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Domination in graphs

Let G =(V,E) be a graph and S C V.

S dominates G if all vertices of G are in S or adjacent to a vertex
of S.
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Power Domination

Let G = (V,E) be a graph and S C V.

At first M = N[S]. A vertex u propagates to a vertex v if (uv) € E
and N[u]\ {v} C
S is a power dominating set of G if at some point V = V.
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Power Domination

Let G = (V,E) be a graph and S C V.

At first M = N[S]. A vertex u propagates to a vertex v if (uv) € E
and N[u]\ {v} C
S is a power dominating set of G if at some point V = V.

7p(G) =1
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Power Domination

e Introduced in the context of monitoring power grids

» Mili, Baldwin and Adapa (1990)
» Baldwin, Mili, Boisen and Adapa (1993)
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Power Domination

Introduced in the context of monitoring power grids
» Mili, Baldwin and Adapa (1990)
» Baldwin, Mili, Boisen and Adapa (1993)
Reformulated in graph terms and proven to be NP-complete
» Haynes, Hedetniemi, Hedetniemi and Henning (2002)
Solved on square grids and other products of paths

» Doring and Henning (2006)
» Dorbec, Mollard, Klavzar and Spacapan (2008)

Solved on hexagonal grids

» Ferrero, Varghese and Vijayakuma (2011)
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Result on hexagonal shaped grid H

Theorem

der of length kK — 1. Then, vp(Hk) = [—‘

Let H be a triangular grid with a regular hexagonal-shaped bor-

VAVAVAVAVAVAVAVAVAVAN
VAVAVAVAVAVAVAVAVAY,
NAVAVAVAVAVAVAVAV
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Result on triangular shaped grid T

Theorem

Let Ty be a triangular grid with an equilateral triangular-shaped

border of length k — 1. Then, vp(Ty) = “{‘

AVAVAVAVA
AVAVAVAVAVA
LN NN

k-1
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Lower Bound

The proof of the lower bound follows these steps :
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Lower Bound

The proof of the lower bound follows these steps :
e We define a function @ on
e We show that at the beginning Q(N[S]) < 12|5|
e We show that Q is non-increasing
e We show that at the end, if the grid is fully monitored,
Q(M) =3k

This prove that we must have |S| > %
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Tip edges and base edges

e An edge (uv) is a if u and v are monitored but their
neighbor in the direction of the tip is not.

VAW
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Holes

e A hole is a connected component of V \ (/) that does not
contain points of the border of the grid.
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The quantity @

We define the function @ as follows :

Q(M)=2T+B+3C—3H
Where :

e [ is the number of tip edges
e B is the number of base edges
e C is the number of connected components of M

e H is the number of holes
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At the end

We know the value of @ when all vertices are monitored :

—

k—1

Q=3(k—1)x1+3=3k
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At the end

We know the value of @ when all vertices are monitored :

—

k—1

Q=3(k—1)x1+3=3k

What remains to do :
e Proving that @ is non-increasing

e Finding the starting value of Q with respect to S
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@ is non increasing

Lemma

Q does not increase when new vertices are monitored. ]

We prove this statement by looking at every case:
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Starting value of @

Lemma
At the beginning, Q(N[S]) < 12|5| ]

We suppose here that N[S] is connected.
We define Gs = (Vs, Es) as follows :
e Vs =5
e (xy) € Es if x and y form a bridge or a double-bridge :

bridge double-bridge
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Starting value of @

Gs is planar ]

We can apply Euler's formula:

|Es| — f(Gs) +1=|Vs| — c(Gs)
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Starting value of @

Gs is planar ]

We can apply Euler's formula:

|Es| — f(Gs) +1 = [Vs| — c(Gs)
We can notice that;
o |Vs| =[S
e ¢(Gs)>1
e f(Gs)—1<H

|Es| — H+1< S|
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Use of a discharging method

Lemma

At the beginning, 27 + B < 9|5| + 3|Es| ]

We give:
e a weight of 9 to each vertex of S

e a weight of 3 to each bridge and double-bridge
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Use of a discharging method

Lemma

At the beginning, 27 + B < 9|5| + 3|Es| ]

We give:
e a weight of 9 to each vertex of S

e a weight of 3 to each bridge and double-bridge

At the end we want:
e A weight of 2 on each
e A weight of 1 on each base edge

e A non-negative weight on each vertex
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Use of a discharging method

e If uisin S, then it gives a weight of 1.5 to each of its
neighbors
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Use of a discharging method

e If uisin S, then it gives a weight of 1.5 to each of its
neighbors

e If uis incident to a , then it gives it a weight of 1

e If uis incident to a base edge, then it gives it a weight of 0.5
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Use of a discharging method

e If uisin S, then it gives a weight of 1.5 to each of its
neighbors

e If uis incident to a , then it gives it a weight of 1
e If uis incident to a base edge, then it gives it a weight of 0.5

e Otherwise, it gives 0.5 to each of its neighbors that it shares
with a vertex of S.
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Use of a discharging method

If uisin S, then it gives a weight of 1.5 to each of its
neighbors

If uis incident to a , then it gives it a weight of 1

If uis incident to a base edge, then it gives it a weight of 0.5
Otherwise, it gives 0.5 to each of its neighbors that it shares
with a vertex of S.

Bridges and double-bridges give 2 to their and 1 to
their base edge
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Use of a discharging method

All and base edges have the good weight.
We have to make sure that no vertex has a negative weight.
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Use of a discharging method

All and base edges have the good weight.
We have to make sure that no vertex has a negative weight.

The only possible issue is when a vertex is adjacent to two

double bridge
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Starting value of @

We have seen that:

e 27 + B <9|S| + 3|Es|
o |[Es|-H+1<|S]

o)
27T +B <9|S|+3|S|+3H -3
this is true for each connected component so

Q=27 +B+3C—3H<125|
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Conclusion

o At the beginning, Q < 12|5|
e At the end, Q = 3k

e (@ is non-increasing

SO

51>

N

19/20



Conclusion

o At the beginning, Q < 12|5|
e At the end, Q = 3k

e (@ is non-increasing

SO

k
> =
SIz;

This gives us the lower bound and we can reach it so:

Theorem

P(Ti) = H—‘
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