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Domination in graphs

Let G = (V ,E ) be a graph and S ⊆ V .

S dominates G if all vertices of G are in S or adjacent to a vertex

of S .

The objective is to �nd γ(G), the size of a minimum dominating set in G

γ(G ) = 2
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Power Domination

Let G = (V ,E ) be a graph and S ⊆ V .

At �rst M = N[S ]. A vertex u propagates to a vertex v if (uv) ∈ E
and N[u] \ {v} ⊆ M.

S is a power dominating set of G if at some point M = V .

γP(G ) = 1
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Power Domination

• Introduced in the context of monitoring power grids
I Mili, Baldwin and Adapa (1990)
I Baldwin, Mili, Boisen and Adapa (1993)

• Reformulated in graph terms and proven to be NP-complete
I Haynes, Hedetniemi, Hedetniemi and Henning (2002)

• Solved on square grids and other products of paths
I Doring and Henning (2006)
I Dorbec, Mollard, Klavºar and �pacapan (2008)

• Solved on hexagonal grids
I Ferrero, Varghese and Vijayakuma (2011)
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Result on hexagonal shaped grid Hk

Let Hk be a triangular grid with a regular hexagonal-shaped bor-

der of length k − 1. Then, γP(Hk) =

⌈
k

3

⌉
.

Theorem

k − 1
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Result on triangular shaped grid Tk

Let Tk be a triangular grid with an equilateral triangular-shaped

border of length k − 1. Then, γP(Tk) =

⌈
k

4

⌉
.

Theorem

k − 1
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Lower Bound

The proof of the lower bound follows these steps :

• We de�ne a function Q on M

• We show that at the beginning Q(N[S ]) ≤ 12|S |
• We show that Q is non-increasing

• We show that at the end, if the grid is fully monitored,

Q(M) = 3k

This prove that we must have |S | ≥ k
4
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Tip edges and base edges

• An edge (uv) is a tip edge if u and v are monitored but their

neighbor in the direction of the tip is not.

• An edge (uv) is a base edge if u and v are monitored but their

neighbor in the direction of the base is not.

u v

u v
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Holes

• A hole is a connected component of V \ (M) that does not
contain points of the border of the grid.

hole
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The quantity Q

We de�ne the function Q as follows :

Q(M) = 2T + B + 3C − 3H

Where :

• T is the number of tip edges

• B is the number of base edges

• C is the number of connected components of M

• H is the number of holes
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At the end

We know the value of Q when all vertices are monitored :

k − 1

Q = 3(k − 1)× 1+ 3 = 3k

What remains to do :

• Proving that Q is non-increasing

• Finding the starting value of Q with respect to S

11/20
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Q is non increasing

Q does not increase when new vertices are monitored.

Lemma

We prove this statement by looking at every case:
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Q ′ = Q − 2− 1+ . . .

Q ′ = Q − 2− 1+ 2+ 1

= Q

Q ′ = Q − 2× 2− 1+ . . .Q ′ = Q − 2× 2− 1+ 2× 1

= Q − 3
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Q ′ = Q − 2− 1+ 2× 2+ 2× 1− 3

= Q

Q ′ = Q − 2+ . . .Q ′ = Q − 2+ 2× 1

= Q
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Starting value of Q

At the beginning, Q(N[S ]) ≤ 12|S |
Lemma

We suppose here that N[S ] is connected.
We de�ne GS = (VS ,ES) as follows :
• VS = S
• (xy) ∈ ES if x and y form a bridge or a double-bridge :

x y

x

y

bridge double-bridge
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Starting value of Q

GS is planar

Lemma

We can apply Euler's formula:

|ES | − f (GS) + 1 = |VS | − c(GS)

We can notice that:

• |VS | = |S |
• c(GS) ≥ 1

• f (GS)− 1 ≤ H

|ES | − H + 1 ≤ |S |
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Use of a discharging method

At the beginning, 2T + B ≤ 9|S |+ 3|ES |
Lemma

We give:

• a weight of 9 to each vertex of S

• a weight of 3 to each bridge and double-bridge

At the end we want:

• A weight of 2 on each tip edge

• A weight of 1 on each base edge

• A non-negative weight on each vertex
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Use of a discharging method

• If u is in S , then it gives a weight of 1.5 to each of its

neighbors

• If u is incident to a tip edge, then it gives it a weight of 1

• If u is incident to a base edge, then it gives it a weight of 0.5

• Otherwise, it gives 0.5 to each of its neighbors that it shares

with a vertex of S .

• Bridges and double-bridges give 2 to their tip edge and 1 to

their base edge
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1.5

1.5

1 1

0.5 0.5
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1x y
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Use of a discharging method

All tip edges and base edges have the good weight.

We have to make sure that no vertex has a negative weight.

The only possible issue is when a vertex is adjacent to two tip

edges.
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Starting value of Q

We have seen that:

• 2T + B ≤ 9|S |+ 3|ES |
• |ES | − H + 1 ≤ |S |

so

2T + B ≤ 9|S |+ 3|S |+ 3H − 3

this is true for each connected component so

Q = 2T + B + 3C − 3H ≤ 12|S |

18/20



Conclusion

• At the beginning, Q ≤ 12|S |
• At the end, Q = 3k

• Q is non-increasing

so :

|S | ≥ k

4

This gives us the lower bound and we can reach it so:

γP(Tk) =

⌈
k

4

⌉Theorem
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